www.4658.net > (1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)%(1+1/2+1/3+1/4+

(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)%(1+1/2+1/3+1/4+

设+1/2+1/3+1/4=x 1/2+1/3+1/4+1/5=y (1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4) =(1+x)y-(1+y)x =y+xy-x-xy =y-x =1/5

设(1-1/2-1/3-1/4-1/5)为a,(1/2+1/3+1/4+1/5)为b,代入得转化为a(b+1/6)-(a-1/6)b,得到ab+1/6a-ab+1/6b,化简为1/6(a+b),再重新代入,解得1/6(1-1/2-1/3-1/4-1/5+1/2+1/3+1/4+1/5)=1/6*1=1/6

原式=(1-1/2-1/3-1/4-1/5)*(1/2+1/3+1/4+1/5)+1/6*(1-1/2-1/3-1/4-1/5) -(1-1/2-1/3-1/4-1/5)*(1/2+1/3+1/4+1/5)+1/6*(1/2+1/3+1/4+1/5) =1/6*(1-1/2-1/3-1/4-1/5+1/2+1/3+1/4+1/5) =1/6*1 =1/6

当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 to GXQ: 假设;s(n)=1+1/2+1/3+1/4+..1/n 当 n很大时 sqrt(n+1) = sqrt(n...

设(1-1/2-1/3-1/4-1/5)=X;(1/2+1/3+1/4+1/5)=Y; 原式=X*(Y+1/6)-(X-1/6)Y=XY+X*1/6-XY+Y*1/6=1/6*(X+Y)=1/6*1=1/6

欧拉常数(Euler-Mascheroni constant) 欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数.它的定义是调和级数与自然对数的差值. 学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的, 证明如下: 由于ln(1+1/n)l...

设a=1/2+1/3+1/4 b=1/2+1/3+1/4+1/5 (1+1/2+1/3+1/4)x(1/2+1/3+1/4+1/5)-(1/2+1/3+1/4)x(1+1/2+1/3+1/4+1/5) =(1+a)b-a(1+b) =b+ab-a-ab =b-a =1/5

#include void fun( int n ) //要传参数!!{int i;double j;double s=1;for(i=2;i

网站地图

All rights reserved Powered by www.4658.net

copyright ©right 2010-2021。
www.4658.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com